วันอาทิตย์ที่ 22 พฤศจิกายน พ.ศ. 2552

โรงไฟฟ้าพลังน้ำ

โรงไฟฟ้าพลังน้ำ
โรงไฟฟ้าพลังงานน้ำ(Hydro turbine)
น้ำเป็นสิ่งที่เกิดขึ้นจากธรรมชาติและหมุนเวียนให้ใช้อย่างไม่มีวันหมด น้ำถือเป็นปัจจัย ที่สำคัญต่อการารดำรงชีวิตของสิ่งมีชีวิตทุกชนิด โดยเฉพาะอย่างยิ่งมนุษย์ใช้ประโยชน์จากน้ำทั้งการบริโภคและอุปโภค นอกจากนี้ยังใช้น้ำเป็นแหล่งพลังงานในการผลิตไฟฟ้าเพื่อทดแทนการใช้เชื้อเพลิงจากซากดึกดำบรรพ์ พลังงานที่ได้จากน้ำเป็นพลังงานสะอาดไม่ก่อให้เกิดมลพิษทางอากาศ จึงทำให้ทั่วโลกมีการส่งเสริมมให้มีการใช้พลังงานน้ำเพื่อผลิตไฟฟ้า
1 วัฏจักรของน้ำโลกมีบริเวณที่เป็นมหาสมุทรประกอบอยู่ถึง 3 ใน 4 ส่วน พลังงานจากแสงอาทิตย์เป็นสาเหตุที่ทำให้เกิดการหมุนเวียนเป็นวัฏจักรของน้ำขึ้น เมื่อน้ำบนโลกได้รับพลังงานความร้อนจากแสงอาทิตย์ จะทำให้น้ำบนผิวโลกตามแหล่งต่างๆ ทั้งในห้วย หนอง คลอง บึง ทะเล และมหาสมุทร ระเหยกลายเป็นไอน้ำและลอยขึ้นไปในอากาศ เมื่อไอน้ำลอยสู่เบื้องบนแล้ว จะได้รับความเย็นและกลั่นตัวกลายเป็นละอองน้ำเล็กๆ ลอยจับตัวกันเป็นกลุ่มเมฆ เมื่อจับตัวกันมากขึ้นและกระทบความเย็นจะกลั่นตัวกลายเป็นหยดน้ำตกลงสู่พื้นโลก และจะเกิดกระบวนการเช่นนี้ซ้ำแล้วซ้ำเล่าเป็นวัฏจักรหมุนเวียนต่อเนื่องกันตลอดเวลา เรียกว่า วัฏจักรธรรมชาติของน้ำ ซึ่งทำให้มีน้ำเกิดขึ้นบนผิวโลกอย่างสม่ำเสมอ
ภาพที่1 แสดงวัฏจักรของน้ำ

น้ำฝนที่ตกลงสู่พื้นโลก บางส่วนอาจตกลงในแหล่งกักเก็บธรรมชาติที่อยู่บนที่สูง หรือตกลงมาในแหล่งกักเก็บที่มนุษย์สร้างขึ้นเช่น ฝาย เขื่อน เป็นต้น แหล่งกักเก็บน้ำเหล่านี้จะเป็นแหล่งสะสมพลังงานของน้ำในรูปของพลังงานศักย์ ซึ่งถ้าเป็นแหล่งกักเก็บที่อยู่บนที่สูงน้ำจะไหลลงสู่พื้นด้านล่างเป็นลักษณะของน้ำตกจะทำให้เกิดการเปลี่ยนรูปของพลังงานตามธรรมชาติ โดยพลังงานศักย์จะเปลี่ยนเป็นพลังงานจลน์ ซึ่งมนุษย์สามารถนำเอาพลังงานจลน์ที่เกิดขึ้นนี้ไปหมุนกังหันเป็นพลังงานกลเพื่อผลิตกระแสไฟฟ้าได้ โดยหลักการนี้มนุษย์จึงได้สร้างแหล่งกักเก็บน้ำดังกล่าวเพื่อใช้พลังงานจากน้ำไปผลิตกระแสไฟฟ้า วัฏจักรของน้ำแสดงในภาพที่ 1วัตถุประสงค์ในการสร้างเขื่อนมี2ประเภทใหญ่ๆดังนี้

1.วัตถุประสงค์เฉพาะเพียงอย่างเดียว(Single Purpose)

1.1 การชลประทาน

1.2 การอุปโภค บริโภค

1.3 การผลิตกระแสไฟฟ้า

2. เพื่อการอเนกประสงค์(Multipurpose

2.1 การชลประทาน(Irrigation)
2.2 การระบายน้ำ(Drainage)

2.3 การบรรเทาอุทกภัย(Flood Control)

2.4 การผลิตกระแสไฟฟ้า(Hydro Power Generation)

2.5 การคมนาคม(Navigation)

2.6 การประมง(Fishery)

2.7 การท่องเที่ยว(Tourism)

2.8 การไล่น้ำเค็ม(Salinity Control)

การวางแผนสร้างเขื่อนการวางแผนสร้างเขื่อน จะต้องพยายามใช้ประโยชน์จากบริเวณที่สร้างเขื่อนให้ได้ประโยชน์มากที่สุดโดยศึกษาและสำรวจความสามารถสูงสุดของแหล่งน้ำดังต่อไปนี้

1. ลักษณะภูมิประเทศ(Topography)

2.อุทกวิทยาและอุตุนิยมวิทยา(Hydrology and Meteorology)

3. ธรณีวิทยาและฐานราก(Geology and Meteorology)

4. วัสดุก่อสร้าง(Construction Materials)

5. ผลกระทบต่อสิ่งแวดล้อม(Environment Impact)

การแบ่งชนิดของเขื่อน

1. เขื่อนแบ่งตามวัสดุในการก่อสร้าง

1.1 เขื่อนแบบฐานแผ่ (Gravity dam)มีลักษณะรูปหน้าตัดเป็นสามเหลี่ยมมีความลาดชันด้านหน้าเขื่อน อาศัยน้ำหนักคอนกรีตตัวเขื่อนรองรับแรงดันน้ำ


เขื่อนกิ่วลม จังหวัดลำปาง

1.2 เขื่อนแบบโค้ง (Arch dam)มีลักษณะเป็นรูปโค้งอาศัยแรงกดของความโค้งจากตัวเขื่อนรับแรงแล้วถ่ายแรงไปยังฐานยันเขื่อน

เขื่อนภูมิพล จังหวัดตาก

1.3 เขื่อนแบบกลวงหรือเขื่อนครีบ (Hollow or Buttress)เป็นคอนกรีตเสริมเหล็ก ด้านหน้าโค้งหรือเรียบก็ได้ ด้านหลังเป็นคอนกรีตค้ำยันจะเป็นตัวรับแรงของน้ำ

2. เขื่อนถม
2.1 เขื่อนดินถมหรือเขื่อนดิน (Earth fill dam)
เป็นเขื่อนที่ใช้ดินถมเป็นส่วนใหญ่(มากกว่า50เปอร์เซ็นต์)มีแกนกลางเป็นดินเหนียว
เขื่อนสิริกิติ์ จังหวัดอุตรดิตถ์


2.2 เขื่อนหินถมหรือหินทิ้ง (Rock fill dam)เป็นเขื่อนที่ใช้หินถมเป็นส่วนใหญ่(หินมากกว่า50เปอร์เซ็นต์ของวัสดุทั้งหมด)

เขื่อนศรีนครินทร์ จ. กาญจนบุรี
แบ่งตามลักษณะการใช้งาน

1. เขื่อนรับน้ำ (Intake Dam)สร้างเพื่อยกระดับน้ำให้สูงเพื่อเข้าสู่โรงไฟฟ้าเพื่อผลิตไฟฟ้าเช่นเขื่อนปากมูล2. เขื่อนเก็บกักน้ำ (Storage Dam)เก็บกักน้ำไว้ในอ่าง แล้วควบคุมการปล่อยน้ำให้เป็นไปตามที่ต้องการเช่นเขื่อนภูมิพล เขื่อนศรีนคริน เขื่อนอุบลรัตน์

3. เขื่อนบังคับน้ำ (Regulating Dam)เพื่อควบคุมปริมาณน้ำยกระดับเข้าคลองส่งน้ำสำหรับการชลประทาน4. เขื่อนเก็บกักน้ำเพื่อสูบน้ำกลับ (Pumped Storage Dam )สร้างเพื่อทำอ่างเก็บน้ำเมื่อปล่อยน้ำออกแล้วสูบกลับ หน้าที่สำคัญคือคอยเก็บน้ำไว้เพื่อผลิตไฟฟ้าในช่วงที่มีความต้องการสูง และในช่างที่มีความต้องการต่ำ ก็จะสูบน้ำจากอ่างเก็บน้ำตอนล่างขึ้นเก็บไว้อ่างตอนบนอย่างเดียว



เขื่อนศรีนครินทร์ จ. กาญจนบุรีแบ่งตามปริมาณน้ำ1. แบบไม่มีอ่างเก็บน้ำ (Run of River)เป็นโรงไฟฟ้า ที่สร้างขึ้นเพื่อผลิตไฟฟ้าโดยการบังคับทิศทางการไหลของน้ำ จากแหล่งน้ำเล็กๆ เช่นตามลำห้วย ลำธารหรือฝายต่างๆ ให้มารวมตัวกันและไหลผ่านท่อหรือรางน้ำที่จัดทำไว้ และใช้แรงดันของน้ำซึ่งตกจากตำแหน่งที่สูงมาหมุนกังหันซึ่งต่อกับแกนหมุนของเครื่องกำเนิดไฟฟ้า ลักษณะของโรงไฟฟ้าพลังงานน้ำแบบไม่มีอ่างเก็บน้ำ ดังแสดงในภาพ


ภาพแสดงลักษณะโรงไฟฟ้าพลังงานน้ำแบบไม่มีอ่างเก็บน้ำ2. แบบมีอ่างเก็บน้ำ(Storage Regulation Development)เป็นโรงไฟฟ้าที่ทำหน้าที่ผลิตไฟฟ้า โดยการใช้พลังงานน้ำที่มีอยู่ซึ่งอาจเป็นแหล่งธรรมชาติหรือเกิดจากการสร้างขึ้นมาเองในลักษณะของเขื่อน ดังแสดงในภาพ ซึ่งน้ำที่มีอยู่ในอ่างหรือเขื่อนจะมีปริมาณมากพอที่จะถูกปล่อยออกมาเพื่อผลิตไฟฟ้าได้ตลอดเวลา ในประเทศไทยโรงไฟฟ้าแบบนี้ถูกใช้เป็นหลักในการผลิตกระแสไฟฟ้าเพราะเป็นระบบที่มีความมั่นคงในการผลิตและจ่ายไฟสูง3. แบบสูบน้ำกลับ(Pumped Storage Plant)โรงไฟฟ้าแบบนี้ถูกสร้างบนพื้นฐานความคิดในการจัดการกระแสไฟฟ้าส่วนเกิน เพราะโดยปกติการใช้ไฟฟ้าในช่วงกลางคืนที่ค่อนดึกไปแล้วจะมีการใช้ไฟฟ้าลดลงแต่กำลังการผลิตไฟฟ้ายังคงเท่าเดิม ทำให้เกิดการสูญเสียพลังงานไฟฟ้า โรงไฟฟ้าพลังงานน้ำแบบสูบน้ำกลับเป็นโรงไฟฟ้าที่มีอ่างเก็บน้ำสองส่วนคือ อ่างเก็บน้ำส่วนบน (upper reservoir) และอ่างเก็บน้ำส่วนล่าง (lower reservoir) น้ำจะถูกปล่อยจากอ่างเก็บน้ำส่วนบนลงมาเพื่อหมุนกังหันและเครื่องกำเนิดไฟฟ้าเมื่อต้องการผลิตไฟฟ้า ดังแสดงในภาพและในช่วงที่ความต้องการใช้ไฟฟ้าต่ำหรือน้อยลง จะใช้ไฟฟ้าที่เหลือจ่ายให้กับปั๊มน้ำขนาดใหญ่ที่ติดตั้งอยู่ในอ่างเก็บน้ำส่วนล่าง เพื่อสูบน้ำจากอ่างเก็บน้ำส่วนล่างนี้กลับขึ้นไปเก็บไว้ที่อ่างเก็บน้ำส่วนบนเพื่อใช้ในการผลิตไฟฟ้าต่อไป


ภาพแสดงลักษณะโรงไฟฟ้าพลังงานน้ำแบบสูบกลับส่วนประกอบของโรงไฟฟ้าพลังน้ำโรงไฟฟ้าพลังงานน้ำมีส่วนประกอบที่ควรรู้จักดังต่อไปนี้1 อาคารรับน้ำ (power intake) คืออาคารสำหรับรับน้ำที่ไหลจากอ่างลงสู่ท่อที่อยู่ภายในตัวอาคาร เพื่อนำพลังงานน้ำไปหมุนกังหันและหมุนเครื่องกำเนิดไฟฟ้า ภายในตัวอาคารจะมีห้องควบคุมระบบการไหลของน้ำและระบบการผลิตไฟฟ้า อาคารรับน้ำโดยทั่วไปจะถูกสร้างไว้ใกล้ๆ ตัวเขื่อน2 ตะแกรง (screen) เป็นอุปกรณ์ที่ใช้ป้องกันเศษไม้ หรือวัตถุใดๆ ที่จะผ่านเข้าไปทำให้เกิดการอุดตันของท่อส่งน้ำ หรือสร้างความเสียหายให้กับกังหัน3 อุโมงค์เหนือน้ำ (headrace) เป็นช่องสำหรับให้น้ำไหลเข้ามายังท่อส่งน้ำอยู่ภายในตัวเขื่อน อุโมงค์นี้จะอยู่ในตัวอาคารรับน้ำมีพื้นที่หน้าตัดเป็นรูปเกือกม้าหรือวงกลม ทำด้วยคอนกรีตเสริมเหล็ก4 ท่อส่งน้ำ (penstock) เป็นท่อสำหรับรับน้ำจากเหนือเขื่อนและส่งต่อไปยังอาคารรับน้ำ เพื่อหมุนกังหันและเครื่องกำเนิดไฟฟ้า5 อาคารลดแรงดันน้ำ (surge tank) เป็นอาคารที่สร้างขึ้นเพื่อควบคุมแรงดันของน้ำที่จะอัดใส่ภายในท่อส่งน้ำ ซึ่งอาจทำให้ท่อหรือหัวฉีดน้ำเสียหายได้ โดยทั่วไปจะสร้างอยู่ระหว่างตัวเขื่อนกับอาคารรับน้ำแต่โรงไฟฟ้าที่อยู่ใกล้กับตัวเขื่อนอยู่แล้ว ก็ไม่จำเป็นต้องมีอาคารลดแรงดันน้ำนี้6 ประตูน้ำ (wicket gate or guide vane) เป็นบานประตูที่ควบคุมการไหลของน้ำที่จะไหลเข้าไปหมุนใบพัดของกังหัน ควบคุมโดยการปิดหรือเปิดประตูน้ำนี้ให้น้ำไหลผ่านเข้าไปยังท่อส่งน้ำในอัตราที่เหมาะสม7 กังหันน้ำ (water turbine) เป็นตัวรับแรงดันของน้ำที่ไหลมาจากท่อส่งน้ำ โดยแรงดันนี้จะทำหน้าที่ฉีดหรือผลักดันให้กังหันหมุน ทำให้เครื่องกำเนิดไฟฟ้าสามารถผลิตไฟฟ้าออกมาได้ กังหันเป็นส่วนประกอบที่สำคัญของโรงไฟฟ้าพลังน้ำ ซึ่งจะได้กล่าวถึงรายละเอียดในหัวข้อต่อไป8 ท่อรับน้ำ (draft tube) เป็นท่อรับน้ำหลังจากที่น้ำผ่านออกมาจากกังหัน เพื่อนำน้ำออกไปยังท้ายน้ำ ท่อรับน้ำนี้จะอยู่บริเวณส่วนหลังของกังหัน9 ทางน้ำล้น (spill way) คือทางระบายน้ำออกจากอ่างเก็บน้ำ ในกรณีที่น้ำในอ่างมีระดับสูงเกินไป ทางน้ำล้นจะต้องมีขนาดใหญ่พอที่จะให้ปริมาณน้ำสูงสุดที่ระบายออก สามารถระบายออกได้ทันเพื่อป้องกันไม่ให้เกิดความเสียหายแก่เขื่อน10 เครื่องกำเนิดไฟฟ้า (generator) เป็นอุปกรณ์สำหรับเปลี่ยนพลังงานกลจากการหมุนของกังหันมาเป็นพลังงานไฟฟ้าโดยใช้หลักการของขดลวดตัดผ่านสนามแม่เหล็ก11 หม้อแปลง (transformer) เป็นอุปกรณ์ไฟฟ้าที่ใช้สำหรับแปลงแรงดัน ไฟฟ้าที่ผลิตได้จากเครื่องกำเนิดไฟฟ้า ให้เป็นไฟฟ้าที่มีแรงดันสูงเพื่อส่งเข้าสู่ระบบสายส่งต่อไป
กังหันน้ำ (Water Turbine)
กังหันเป็นส่วนประกอบที่สำคัญที่สุดของโรงไฟฟ้า เพราะกังหันจะเป็นตัวรับการกระทำจากต้นกำลังมาเป็นพลังงานกลเพื่อหมุนเครื่องกำเนิดไฟฟ้าผลิตไฟฟ้าออกมากังหันน้ำแบ่งออกได้เป็น 2 ชนิดคือ
1. กังหันแบบแรงกระแทก (Impulse Turbine)กังหันแบบแรงกระแทกเป็นกังหันที่หมุนโดยอาศัยแรงฉีดของน้ำจากท่อส่งน้ำที่รับน้ำจากที่สูง หรือหัวน้ำสูง ไหลลงมาตามท่อที่ลดขนาดลงมายังหัวฉีดกระแทกถังหันไม่หมุน และต่อแกนกับเครื่องกำเนิดผลิตไฟฟ้าออกไป กั
งหันแบบแรงกระแทกแบ่งออกเป็น 3 ชนิด คือ
1.1 แบบใช้กับหัวน้ำต่ำกำลังผลิตน้อยใช้แบบแบงกี (Banki Type)แบบใช้กับหัวน้ำต่ำกำลังผลิตน้อยใช้แบบแบงกี (Banki Type)
1.2 แบบใช้กับหัวน้ำปานกลาง ใช้แบบเทอร์โก (Turgo Type)3. แบบใช้กับหัวน้ำสูงกำลังผลิตมาก ใช้แบบเพลตัน (Pelton Type)
2 กังหันแบบแรงสะท้อน (Reaction Turbine)กังหันแบบแรงสะท้อนเป็นกังหันที่หมุนโดยใช้แรงดันของน้ำที่เกิดจากความต่างระดับของน้ำด้านหน้าและด้านท้ายของกังหันกระทำต่อใบพัด ระดับด้านท้ายน้ำจะอยู่สูงกว่าระดับบนของปลายท่อปล่อยน้ำออกเสมอ กังหันชนิดนี้เหมาะกับอ่างเก็บน้ำที่มีความสูงปานกลางและต่ำ กังหันแรงสะท้อน แบ่งได้เป็น 3 แบบ คือ
2.1 กังหันฟรานซิส (Francis Turbine)เป็นกังหันแบบที่ใช้การไหลช้าของปริมาณน้ำในใบพัดเป็นแบบแฉกและไหลออกขนานกับแกน ซึ่งแสดงว่ามีการเปลี่ยนทิศทางการไหลในขณะผ่านใบพัด กังหันฟรานซิสมีทั้งแบบแกนนอนและแกนตั้งกังหันฟรานซิสแนวนอนกังหันฟรานซิส
2.2 กังหันเดเรียซ (Deriaz Turbine)หรือกังหันแบบที่มีการไหลของน้ำในทิศทางทแยงมุมกับแกน กังหันแบบนี้ใช้กับกรณีที่มีหัวน้ำสูง ส่วนของใบพัดจะเคลื่อนที่ได้เมื่อมีน้ำไหลผ่าน และมีลักษณะคล้าย ๆ กับกังหันฟรานซิสกังหันเดเรียซ
2. กังหันคาปลาน (Kaplan Turbine)หรือกังหันแบบใบพัด น้ำจะไหลผ่านใบพัดในทิศทางขนานกับแกนของกังหัน ใช้กับงานที่มีหัวน้ำต่ำ ใบพัดของกังหันคาปลานเป็นใบพัดที่สามารถปรับได้ตามมุมของซี่ใบพัดโดยอัตโนมัติตามแรงอัดหรือแรงฉีดแรงน้ำ โดยจะสัมพันธ์กับความแรงที่หัวฉีดน้ำกังหันเดเรียซ และกังหันน้ำกระเปาะ ( Bulb)(โรงไฟฟ้าพลังน้ำเขื่อนปากมูล)
ข้อดีของการใช้พลังงานน้ำ
1 เนื่องจากน้ำมีวัฏจักรเป็นธรรมชาติ ดังนั้นเมื่อเราใช้พลังงานจากน้ำแล้ว น้ำที่ถูกใช้แล้วจะถูกปล่อยกลับไปสู่แหล่งธรรมชาติ จะมีการระเหยกลายเป็นไอเมื่อได้รับพลังงาน ความร้อนจากดวงอาทิตย์ และเมื่อไอน้ำรวมตัวเป็นเมฆก็จะตกลงมาเป็นน้ำฝนหมุนเวียนกลับมาทำให้เราสามารถใช้พลังงานน้ำได้ตลอดไปไม่สิ้นสุด2 การใช้พลังงานจากน้ำเป็นการใช้เฉพาะส่วนที่อยู่ในรูปพลังงาน ซึ่งไม่ใช่เป็นเนื้อมวลสาร ดังนั้นเมื่อใช้พลังงานไปแล้วเนื้อมวลสารของน้ำก็ยังคงเหลืออยู่ น้ำที่ถูกปล่อยออกมายังมีปริมาณและคุณภาพเหมือนเดิม สามารถนำไปใช้ประโยชน์อย่างอื่นได้อีกมากมาย เช่น เพื่อการชลประทาน การเกษตร การอุปโภคบริโภค หรือรักษาระดับน้ำในแม่น้ำให้มีความลึกพอต่อการเดินเรือ เป็นต้น
3 การสร้างเขื่อนเป็นการเก็บกักน้ำเอาไว้ใช้ในช่วงที่ไม่มีฝนตก ทำให้ได้แหล่งน้ำขนาดใหญ่ซึ่งสามารถประกอบอาชีพด้านประมง หรือใช้เป็นสถานที่ท่องเที่ยวพักผ่อนหย่อนใจได้ และในบางโอกาสก็ยังสามารถใช้ไล่น้ำเสียในแม่น้ำที่เกิดจากการปล่อยของโรงงานอุตสาหกรรมต่างๆ หรือช่วยไล่น้ำทะเลในเวลาที่น้ำทะเลหนุนสูงขึ้นมา
4 ระบบของพลังงานน้ำเป็นระบบที่มีประสิทธิภาพสูง สามารถดำเนินการผลิตพลังงานไฟฟ้าได้ในเวลาอันรวดเร็ว และสามารถควบคุมให้ผลิตพลังงานออกมาได้ใกล้เคียง กับความต้องการ ทำให้การผลิตและการใช้พลังงานเป็นไปอย่างมีประสิทธิภาพ
5 อุปกรณ์ต่างๆ ของระบบพลังงานน้ำส่วนใหญ่จะมีความทนทานสูง มีอายุการใช้งานนาน
ข้อเสียของการใช้พลังงานน้ำ
1.ในการสร้างเขื่อนเพื่อกักเก็บน้ำนั้น จะต้องมีการสูญเสียพื้นที่ป่าไม้เป็น บริเวณกว้างซึ่งนับวันป่าไม้จะหมดลงไปทุกที และทำให้สัตว์ป่าต้องอพยพหนีน้ำท่วม บางชนิดอาจสูญพันธุ์ไปจากโลกเลยก็ได้ ซึ่งถือเป็นการทำลายระบบนิเวศวิทยาของพื้นที่บริเวณนั้นอย่างรุนแรง นอกจากนี้ยังทำให้ชีวิตความเป็นอยู่ของคนในพื้นที่ต้องเปลี่ยนไปจากเดิมด้วย
2. ต้องใช้เงินลงทุนสูงในการสร้างเขื่อนหรือพัฒนาแหล่งพลังงานน้ำ เพื่อให้ได้ลักษณะภูมิประเทศที่เหมาะสม เช่น ต้องการพื้นที่ที่มีระดับท้องน้ำลึกๆ สำหรับการสร้างเขื่อนสูงโดยที่มีความยาวไม่มากนัก ซึ่งพื้นที่เหล่านี้มักจะอยู่ในป่าหรือช่องเขาแคบๆ
3.เนื่องจากแหล่งพลังงานน้ำส่วนใหญ่อยู่ในที่ห่างไกลชุมชน จึงมักเกิดปัญหาในเรื่องการจัดหาบุคลากรไปปฏิบัติงาน รวมทั้งการซ่อมแซม การบำรุงรักษาสิ่งก่อสร้างและอุปกรณ์ต่างๆ ไม่ค่อยสะดวกนักเพระการคมนาคมไม่สะดวก

วันเสาร์ที่ 21 พฤศจิกายน พ.ศ. 2552

โรงไฟฟ้านิวเคลียร์

โรงงานไฟฟ้า
อ้างอิงจากเว็บไซต์โรงไฟฟ้านิวเคลียร์.[ออนไลน์].เข้าถึงจาก:
http://kanchanapisek.or.th/kp6/BOOK28/chapter7/t28-7-l1.htm#sect1



โรงไฟฟ้านิวเคลียร์คืออะไร

“โรงไฟฟ้านิวเคลียร์” คือ โรงงานผลิต กระแสไฟฟ้าที่ใช้พลังงานความร้อนจากปฏิกิริยาแตกตัวทางนิวเคลียร์ (nuclear fission reaction) ทำให้น้ำกลายเป็นไอน้ำที่มีแรงดันสูง แล้วส่งไอน้ำไปหมุนกังหันไอน้ำ ซึ่งต่อกับเครื่องกำเนิดไฟฟ้า เพื่อผลิตไฟฟ้า และส่งต่อไปยังผู้บริโภคต่อไป
โรงไฟฟ้านิวเคลียร์มีหลักการผลิตไฟฟ้าคล้ายกับ โรงไฟฟ้าพลังความร้อนทั่วไป กล่าวคือ จะใช้พลังงานความร้อนไปผลิตไอน้ำ แล้วส่งไอน้ำไปหมุนกังหันไอน้ำและ เครื่องกำเนิดไฟฟ้า เพื่อผลิตกระแสไฟฟ้า ออกมา แต่มีข้อแตกต่างกันคือ ต้นกำเนิดพลังงานความร้อนของโรงไฟฟ้านิวเคลียร์เกิดจากปฏิกิริยาแตกตัวของยูเรเนียม-๒๓๕ ในเชื้อเพลิงนิวเคลียร์ ส่วนความร้อนจากโรงไฟฟ้าพลังความร้อนทั่วไปนั้นได้จากการเผาไหม้ของเชื้อเพลิง ซึ่งได้แก่ ถ่านหินหรือลิกไนต์ ก๊าซธรรมชาติหรือน้ำมัน เมื่อเปรียบเทียบปริมาณเชื้อเพลิงที่ใช้สำหรับการ ผลิตไฟฟ้า พบว่า หากใช้ยูเรเนียมธรรมชาติ (ความเข้มข้นของยูเรเนียม-๒๓๕ ประมาณร้อยละ ๐.๗) จำนวน ๑ ตัน จะสามารถผลิตไฟฟ้าได้มากกว่า ๔๐ ล้านกิโลวัตต์/ชั่วโมง ในขณะที่ต้องใช้ถ่านหินถึง ๑๖,๐๐๐ ตัน หรือใช้น้ำมันถึง ๘๐,๐๐๐ บาร์เรล (ประมาณ ๑๓ ล้านลิตร) จึงจะผลิตไฟฟ้าได้เท่ากัน

การนำพลังงานนิวเคลียร์มาใช้เพื่อผลิต ไฟฟ้า เป็นความสำเร็จทางวิทยาศาสตร์ที่เกิดขึ้นในช่วงเวลาประมาณ ๕๐ ปีที่ผ่านมานี้เอง โดยใน พ.ศ. ๒๔๙๔ ได้มีการทดลอง เดินเครื่องปฏิกรณ์เพื่อผลิตกระแสไฟฟ้าเป็นครั้งแรกของโลกขึ้นที่สถานีทดลองพลังงานไอดาโฮ เพื่อจ่ายกระแสไฟฟ้าให้แก่ เมืองอาร์โค มลรัฐไอดาโฮ ประเทศสหรัฐอเมริกา
การก่อสร้างโรงไฟฟ้านิวเคลียร์แบบปฏิกรณ์ความดันสูงในเชิงพาณิชย์ขนาด ๗๕ เมกะวัตต์ ได้เริ่มขึ้นที่ชิปปิงพอร์ต มลรัฐเพนซิลเวเนีย ประเทศสหรัฐอเมริกา ใน พ.ศ. ๒๔๙๗ และได้จ่ายกระแสไฟฟ้าให้แก่เมืองพิตต์สเบิร์ก ใน พ.ศ. ๒๕๐๐
ต่อมาใน พ.ศ. ๒๕๐๒ โรงไฟฟ้านิวเคลียร์เดรสเดน (แบบปฏิกรณ์น้ำเดือด) ได้เดินเครื่องจ่ายกระแสไฟฟ้าให้แก่เมืองมอร์ริส มลรัฐอิลลินอยส์ หลังจากนั้น การก่อสร้างโรงไฟฟ้านิวเคลียร์ทั้ง ๒ แบบได้ขยายตัวขึ้น และแพร่หลายไปยังประเทศอื่นๆ รวมทั้งการพัฒนาเทคโนโลยีโรงไฟฟ้า นิวเคลียร์ให้มีขนาดใหญ่ขึ้นกว่า ๑,๐๐๐ เมกะวัตต์ และมีความปลอดภัยยิ่งขึ้น

โรงไฟฟ้านิวเคลียร์มี่ส่วนประกอบที่สำคัญอะไรบ้าง

โรงไฟฟ้านิวเคลียร์มีส่วนประกอบที่สำคัญ คือ

๑) อาคารปฏิกรณ์ ประกอบด้วย เครื่องปฏิกรณ์ เครื่องผลิตไอน้ำ เครื่องควบคุมความดัน ปั๊มน้ำระบายความร้อน อุปกรณ์อื่นๆ เช่น วัสดุกำบังรังสี ระบบควบคุมการเดินเครื่อง และระบบความปลอดภัยต่างๆ

๒) อาคารเสริมระบบปฏิกรณ์ ประกอบด้วย เครื่องมืออุปกรณ์สำหรับการเดินเครื่องปฏิกรณ์ อุปกรณ์ความปลอดภัย บ่อเก็บเชื้อเพลิงใช้แล้ว

๓) อาคารกังหันไอน้ำ ประกอบด้วย ชุดกังหันไอน้ำ เครื่องกำเนิดไฟฟ้าและอุปกรณ์ประกอบ

๔) สถานีไฟฟ้าแรงสูง ประกอบด้วย ระบบสายส่งไฟฟ้าแรงสูงและอุปกรณ์ประกอบ

๕) อาคารฝึกหัดเดินเครื่องโรงไฟฟ้า ประกอบด้วย แบบจำลองสำหรับฝึกหัดเดินเครื่องโรงไฟฟ้า ทั้งสภาวะปกติและฉุกเฉิน
๖) อาคารระบบคอมพิวเตอร์ ประกอบด้วย ระบบอุปกรณ์/ข้อมูลสำหรับ การเดินเครื่องโรงไฟฟ้า

๗) หม้อแปลงไฟฟ้า ประกอบด้วย หม้อแปลงไฟฟ้าหลัก และหม้อแปลงไฟฟ้าสำรองสำหรับการเดินเครื่อง

๘) อาคารอำนวยการ ประกอบด้วย สำนักงาน ห้องทำงานต่างๆ ห้องประชุม

๙) อาคารสำนักงานและฝึกอบรม ประกอบด้วย ห้องทำงาน ห้องฝึกอบรม ห้องประชุม ห้องปฏิบัติการทางเคมี ห้องอาหาร

๑๐) อาคารรักษาความปลอดภัย เป็นอาคารทางเข้าบริเวณโรงไฟฟ้า ประกอบด้วย เจ้าหน้าที่และอุปกรณ์เครื่องมือของระบบรักษาความปลอดภัยต่างๆ

๑๑) อาคารโรงสูบน้ำ เป็นอาคารที่สูบน้ำจากแหล่งน้ำธรรมชาติภายนอก เพื่อนำมาควบแน่นไอน้ำในระบบผลิตไอน้ำ ประกอบด้วย ชุดปั๊มน้ำ และอุปกรณ์ประกอบต่างๆ


๑๒) ส่วนประกอบอื่นๆ ได้แก่ ระบบสายส่งไฟฟ้าแรงสูง และหอระบายความร้อน (ถ้าไม่มีแหล่งน้ำธรรมชาติขนาดใหญ่)






















โรงไฟฟ้านิวเคลียร์แบ่งการทำงานออก เป็น ๒ ส่วนใหญ่ๆ คือ



๑) ส่วนผลิตความร้อน ได้แก่ เครื่องปฏิกรณ์นิวเคลียร์ ระบบน้ำระบายความร้อน และเครื่องผลิตไอน้ำ
๒) ส่วนผลิตกระแสไฟฟ้า ประกอบด้วย กังหันไอน้ำ และเครื่องกำเนิดไฟฟ้า โดยส่วนผลิตความร้อนจะส่งผ่านความร้อนให้กระบวนการผลิตไอน้ำ เพื่อนำไปใช้ผลิต ไฟฟ้าต่อไป
พิจารณาจากหลักการทำงาน อาจแบ่งโรงไฟฟ้านิวเคลียร์ออกได้เป็น ๓ แบบดังนี้
๑. โรงไฟฟ้านิวเคลียร์แบบปฏิกรณ์ความดันสูง (Pressurized Water Reactor : PWR)
โรงไฟฟ้านิวเคลียร์แบบ PWR มีหลักการทำงานคือ เมื่อเครื่องปฏิกรณ์ทำงาน จะเกิดปฏิกิริยาแตกตัวกับเชื้อเพลิงนิวเคลียร์ ทำให้เกิดความร้อน กัมมันตรังสี และผลิตผล จากการแตกตัว (fission product) หรือกาก เชื้อเพลิง โดยความ
ร้อนจากเชื้อเพลิงจะถ่ายเทให้แก่น้ำระบายความร้อนวงจรที่ ๑ ซึ่งไหลเวียนตลอดเวลาด้วยปั๊มน้ำ โดยมีเครื่องควบคุมความดันคอยควบคุมความดันภายในระบบให้สูงและคงที่ ส่วนน้ำที่รับความร้อนจากเชื้อเพลิงจะไหลไปยังเครื่องผลิตไอน้ำ และถ่ายเทความร้อนให้ระบบน้ำวงจรที่ ๒ ซึ่งแยกเป็นอิสระจากกัน ทำให้น้ำเดือดกลายเป็นไอน้ำแรงดันสูง และถูกส่งผ่านไปหมุนกังหันไอน้ำ และเครื่องกำเนิด ไฟฟ้าซึ่งต่ออยู่กับกังหันไอน้ำ เมื่อเครื่องกำเนิดไฟฟ้าหมุน จะเกิดกระแสไฟฟ้าที่สามารถนำไปใช้งานได้ต่อไป ไอน้ำแรงดันสูงที่หมุนกังหันไอน้ำแล้ว จะมีแรงดันลดลง และถูกส่งผ่านมาที่เครื่องควบแน่นไอน้ำ เมื่อไอน้ำได้รับความเย็นจากวงจรน้ำเย็นจะกลั่นตัวเป็นน้ำและส่งกลับไปยังเครื่องผลิตไอน้ำด้วยปั๊มน้ำ เพื่อรับความร้อนจากระบบน้ำวงจรที่ ๑ วนเวียนเช่นนี้ตลอดการเดินเครื่องปฏิกรณ์
๒. โรงไฟฟ้านิวเคลียร์แบบปฏิกรณ์น้ำเดือด (Boiling Water Reactor : BWR)
โรงไฟฟ้านิวเคลียร์แบบ BWR มีหลัก การทำงานคล้ายโรงไฟฟ้านิวเคลียร์แบบ PWR แต่มีข้อแตกต่างกันที่ส่วนผลิตความร้อน เพราะความร้อนจากเชื้อเพลิงที่ถ่ายเทให้แก่วงจรน้ำระบายความร้อน จะทำให้น้ำเดือดกลายเป็นไอน้ำไปหมุนกังหันไอน้ำโดยตรง โดยไม่มีระบบน้ำวงจรที่ ๒ มารับความร้อน เหมือนแบบ PWR
๓. โรงไฟฟ้านิวเคลียร์แบบปฏิกรณ์น้ำมวลหนัก (Pressurized Heavy Water Reactor : PHWR)
โรงไฟฟ้านิวเคลียร์แบบ PHWR หรือมีชื่อทางการค้าว่า แคนดู (CANDU : CANada Deuterium Uranium) มีหลักการทำงานเหมือนโรงไฟฟ้าแบบ PWR แต่แตกต่างกันที่เครื่องปฏิกรณ์จะวางในแนวนอน ใช้ยูเรเนียมธรรมชาติเป็นเชื้อเพลิง และใช้น้ำมวลหนัก (Heavy water : D2O) เป็นสาร ระบายความร้อนและสารหน่วงนิวตรอน